0.5*x+1[(5x-4)(3x+2)]=0

Simple and best practice solution for 0.5*x+1[(5x-4)(3x+2)]=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.5*x+1[(5x-4)(3x+2)]=0 equation:


Simplifying
0.5x + 1[(5x + -4)(3x + 2)] = 0

Reorder the terms:
0.5x + 1[(-4 + 5x)(3x + 2)] = 0

Reorder the terms:
0.5x + 1[(-4 + 5x)(2 + 3x)] = 0

Multiply (-4 + 5x) * (2 + 3x)
0.5x + 1[(-4(2 + 3x) + 5x * (2 + 3x))] = 0
0.5x + 1[((2 * -4 + 3x * -4) + 5x * (2 + 3x))] = 0
0.5x + 1[((-8 + -12x) + 5x * (2 + 3x))] = 0
0.5x + 1[(-8 + -12x + (2 * 5x + 3x * 5x))] = 0
0.5x + 1[(-8 + -12x + (10x + 15x2))] = 0

Combine like terms: -12x + 10x = -2x
0.5x + 1[(-8 + -2x + 15x2)] = 0
0.5x + [-8 * 1 + -2x * 1 + 15x2 * 1] = 0
0.5x + [-8 + -2x + 15x2] = 0

Reorder the terms:
-8 + 0.5x + -2x + 15x2 = 0

Combine like terms: 0.5x + -2x = -1.5x
-8 + -1.5x + 15x2 = 0

Solving
-8 + -1.5x + 15x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
15 the coefficient of the squared term: 

Divide each side by '15'.
-0.5333333333 + -0.1x + x2 = 0

Move the constant term to the right:

Add '0.5333333333' to each side of the equation.
-0.5333333333 + -0.1x + 0.5333333333 + x2 = 0 + 0.5333333333

Reorder the terms:
-0.5333333333 + 0.5333333333 + -0.1x + x2 = 0 + 0.5333333333

Combine like terms: -0.5333333333 + 0.5333333333 = 0.0000000000
0.0000000000 + -0.1x + x2 = 0 + 0.5333333333
-0.1x + x2 = 0 + 0.5333333333

Combine like terms: 0 + 0.5333333333 = 0.5333333333
-0.1x + x2 = 0.5333333333

The x term is -0.1x.  Take half its coefficient (-0.05).
Square it (0.0025) and add it to both sides.

Add '0.0025' to each side of the equation.
-0.1x + 0.0025 + x2 = 0.5333333333 + 0.0025

Reorder the terms:
0.0025 + -0.1x + x2 = 0.5333333333 + 0.0025

Combine like terms: 0.5333333333 + 0.0025 = 0.5358333333
0.0025 + -0.1x + x2 = 0.5358333333

Factor a perfect square on the left side:
(x + -0.05)(x + -0.05) = 0.5358333333

Calculate the square root of the right side: 0.732006375

Break this problem into two subproblems by setting 
(x + -0.05) equal to 0.732006375 and -0.732006375.

Subproblem 1

x + -0.05 = 0.732006375 Simplifying x + -0.05 = 0.732006375 Reorder the terms: -0.05 + x = 0.732006375 Solving -0.05 + x = 0.732006375 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.05' to each side of the equation. -0.05 + 0.05 + x = 0.732006375 + 0.05 Combine like terms: -0.05 + 0.05 = 0.00 0.00 + x = 0.732006375 + 0.05 x = 0.732006375 + 0.05 Combine like terms: 0.732006375 + 0.05 = 0.782006375 x = 0.782006375 Simplifying x = 0.782006375

Subproblem 2

x + -0.05 = -0.732006375 Simplifying x + -0.05 = -0.732006375 Reorder the terms: -0.05 + x = -0.732006375 Solving -0.05 + x = -0.732006375 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.05' to each side of the equation. -0.05 + 0.05 + x = -0.732006375 + 0.05 Combine like terms: -0.05 + 0.05 = 0.00 0.00 + x = -0.732006375 + 0.05 x = -0.732006375 + 0.05 Combine like terms: -0.732006375 + 0.05 = -0.682006375 x = -0.682006375 Simplifying x = -0.682006375

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.782006375, -0.682006375}

See similar equations:

| 9(7+k)=84 | | 2y-6=4y+3 | | -3.6(1000)h+75=-51 | | 5(3)+8+3y=23 | | 8x-10=6x+38 | | -3.6(1000)h=-51 | | -3.6(100)h+75=-51 | | log4/log | | (2x-2)(4x+2)(0.5)=0 | | V=4i+3j | | 2m+85=685 | | 5(0)+8+3y=23 | | 12+-.75h=1 | | 5/9÷1/3×1/6 | | 8-9i/4i | | 2(n+3)-(4-6m)=7n | | X-(1-3X)=2X-(-X-3) | | 7x+9=3x+33 | | 1.8=3y+16.5 | | 24y-2x=-1 | | 14.7+.445f=41.4 | | -4x+15= | | (2t^2+t+3)(4t^2+2t-2)=0 | | 9y-24=3(y-2) | | 6.50h+36.50=65.75 | | -6x-4y=-13 | | 14/-3 | | 2x+8=-2+44 | | 60=41x-5.5x^2 | | 60x=8x+20 | | 84/40 | | 4.9=-log(x) |

Equations solver categories